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Abstract
—) 'ﬂf, awlthors ﬂ"/
~We consider Poisson packet traffic, accessing a single slotted channel. We~
7

assume the existence of ternary feedback, per channel slot. We-also adopt the
? ) limited feedback sensing model, where each packet senses the feedback only while
N e
i v it is blocked. For the above model, we- je,velop a collision resolution protocol,

with last-come first serve characteristics, and we name the protocol, LSTFA.
AreTin  dirvint
2 The LSTFA is a refinement of the algorithm developed in $5} and it attains the

¥ same throughput as Gallager's algorithm does, without the full feedback sensing

!! requirement in the latter. The algorithm is also easy to implement, it requires ;ﬁiﬁ
o A
N s\
» reasonable memory storage, it induces uniformly good transmission delays, and it 3%?%

is robust in the presence of feedback errors. In the presence of binary (collision

versus noncollision) feedback, the algorithm may attain throughput 0.4493; the

AN

highest known to this point, among both full and limited sensing algorithms.

This work was supported by the Air Force Office of Scientific Research, under the

grant AFOSR~83-0229,
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1. Introduction

Let us consider the case, where a single, slotted, channel is being accessed

that feedback broadcast, per slot, exists. The limited sensing algorithms arise,
then, when the users tune to the feedback broadcast, only while they are blocked.

In addition to being practically appealing, the limited sensing algorithms are also,

algorithms, for the same channel and user model.
Limited sensing algorithms were first considered by Tsybakov and Vvedenskaya
[2]), for the Poisson user model and for ternary feedback broadcast. The algorithm

in [2] induces a throughput equal to 0.384. Vvedenskaya and Tsybakov [3] developed

feedbacks, and they studied the effects of feedback errors on their performance.
Georgiadis et al [4] proposed and analyzed limited sensing algorithms for binary CNC
and ternary feedbacks, with respective throughputs, 0.42 and 0.425. The latter
authors also developed a limited sensing algorithm for ternary feedback [5], with
throughput equal to 0.4566, which is basically an interrupted version of Gallager's
algorithm [1]. We point out here that Ryter [6] modified the algorithm in [1], for
better behavior in the presence of feedback errors. The algortihms in [1] and (6]
require full feedback sensing, however.

In this paper, we consider the same model as in [5], and we propose and analyze
a limited sensing algorithm that attains throughput 0.487, and induces uniformly
good delay characteristics. The algorithm is also robust in the presence of feed-

back errors. We name the algorithm, Limited Sensing Ternary Feedback Algorithm

2. The Model

We assume that a single, slotted, channel is being accessed by infinitely many,

by a number of independent, identical, and packet-transmitting users. Let us assume

in general, more immune to channel errors, as compared to the continuous sensing such

a number of algorithms for both ternary and binary CNC (collision versus noncollision)
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(LSTFA). We were recently informed that Humblet [7] provided an outline of the LSTFA.
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identical, and independent packet-transmitting users. We model the cumulative
packet arrival process as Poisson, we consider the case where the length of a
single packet equals the length of a slot, and we assume that a packet transmission
can only start at the beginning of some slot. We initially assume that the channel
is errorless; that is, errors can occur only due to collision, where collisions
correspond to simultaneous transmissions by at least two packets. We assume that a
collision results in complete loss of the information included in the involved
packets. Thus, retransmission is then necessary. We consider the existence of
ternary feedback per slot (emptiness, versus success, versus collision), and we assume
limited feedback sensing. That is, each packet tunes to the feedback only while it
is blocked. As a result, only limited sensing transmission algorithms can be
considered here.

Let time be measured in slot units. Let the integer, T, denote then slot
indices, where slot T occupies the transmission time interval [T, T+l). Let x

T

denote the ternary feedback corredponding to slot T, where Xp = 0, x, =1, and

T
Xp = ¢ represent respectively, empty, versus busy with a single packet, versus
collision slot, T. Given T, let us consider some nontransmitted packet, that arrived
in the time interval [T'-1,T'), where T' < T. Then, we denote by,.ta, the exact
arrival instant, in |T'-1,T'), of the packet, and we assume that the packet observes
the feedbacks, Xy
Thus, given T, each nontransmitted packet, that arrived in (-»,T), has observed only

part of the channel feedback history, xi; i < T-1, and it has observed at least the

feedback xT-l'

3. The Algorithm

In this section, we describe a limited sensing algorithm, for the model in
section 2. At each point in time, the algorithm distributes the newly arrived and

the nontransmitted packets across three classes, A, B, and C. Transitions in time
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within or across classes and transmissions are controlled by the operations of the

algorithm.

Class A contains those packets which cannot yet decide whether or not some
collision resolution is in process. Class B contains those packets which know that
some collision resolution is in process, but do not know the time when it started.
Class C contains those packets which know that some collision resolution is in process,
as well as the time when it started. All packets in class C can simultaneously decide
which arrival intervals will be chosen for transmission, while packets in classes A
and B can not. Packets in classes A and B act essentially identically. This will
be evident from the description of the algorithm in this section.

Each nontransmitted packet follows the rules of the algorithm independently,
utilizing ¢ set of parameters, R, A, LA’ Tl’ Tg, and £. Among those, parameters,

R and A are subject to optimization for the satisfaction of the desirable throughput
versus expected delay tradeoff, they are selected a priori, and they are system

parameters. Parameters LA’ Tl’ T , and £ are recursively updated, following the

4

rules of the algorithm. Upon arrival, each packet initiates the algorithm inde-

pendently, following the rules below.

a. Initialization

Let a packet arrive at the time instant to» where tae[T'-l,T'). The packet
observes then the feedback Xpi_ps and continuously observes all feedbacks from
this point on, until it is successfully transmitted. At 1' the packet moves to

= 0.

class 1 below, with initial values T = T'-ta, and LA

b. Class 1
All packets in cla~s 1 act as follows:

1.1 1If Xp = 1, set T+ T+l, and ,

1.1.1 1If Xp = 0 or x

T = 1, move to class 2, with
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1.1.2 1If X, = ¢, move to step 1.2
1.2 1f Xp = C set LA =0, T+ T+ 1, and,
1.2.1 If Xp = 1, move to step 1.1
1.2.2 1f X, = ¢, move to step 1.2
1.2.3 If Xp = 0, move to step 1.3
1.3 1f Xp = 0, set L, + L, +1, get T+ T+ 1, and,

A A
1.3.1 If X, = ¢, move to step 1.2

1.3.2 1If Xp = 1, move to step 1.l

1.3.3 If Xp = 0 and LA'< R + 1, move to step 1.3

1.3.4 If Xp = 0 and LA = R + 1, move to class 2, with LA = LA -1

C. Class 2

All packets in class 2 act as follows:

Start with, '1‘g = T, and,

Y 2. £=4, Ty =T-1L,
Then,
2.1 1If T8 - (T - Tl) <L
2.1a) Set Tg'+ Tg#l’ set T+ T + 1, and TRANSMIT
2.1.1 If Xp = 1, the packet is successfully transmitted
2.1.2 1If Xp = set LA
2.1.2, a) Set £ + £/2, and,

'0,

2.1.2.1 If Tg -(-T) < £, move to step 2.la)

2.1.2.2 If Tg - (T - Tl) > L, set Tg +'T8+1, set T + T+l, and,

2.1.2.2.1 If Xp = C move to step 2.2.3.
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2.1.2,2.2 If Xp = 0, set L, + LAfl, and,

A -
If L, <R, move to step 2.1.2.a). ;gﬁ
i
If LA = R, move to step 2.l.a). A

P
.
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2.1.2.2.3 1If Xp = 1, move to step 2.l.a).
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2.2 If Tg - (T - Tl) > L, set Tg > Tg+1, set T »+ T+l, and,
2.2.1 1If Xp = 0, set Tg -+ Tg - £, LA L, + 1, and,
2,2,1.1 1If LA <R+ 1, move to step 2.

2.2,1.2 1f LA =R+ 1, set LA -+ LA - 1, and move to step 2.

2.2.2 If Xp = l, set T > T -~ £,
g 4

2.2.2 a) Set LA > LA + 1, set £ = A, set Tl =7 - LA’ and,

2,2.2.1 If Tg - (T - Tl) < £, move to step 2.1.a).

2.2.2.2 1If Tg -(T-T,) > %, set Tg + '1‘g +1, set T+ T + 1, and,

1)
2,2,2.2.1 If Xp = c, move to step 2.2.3

2,2.,2.,2.2 1f Xp = 0, or Xp

and move to step 2.

=1, 8etlL, =1,

A

2.2.3 1If Xp = C set LA = 0,

2.2.3 a) Set £ =+ 2/2

2.2.3 b) Set Tg +> ;g +1, set T+ T+ 1, and,
2.,2.3.1 1If Xp = ¢, move to step 2.2.3 a)

A A

2,2.3.2.1 If L, < R, move to step 2.2.3 a).

2.2.3.2,2 1f LA = R, move to step 2.2.3 b).

2,2.3.2 1If Xy = 0, set L, + L, +1, set Tg + Tg - £, and,

2,2.3.2.3 1fL, >R, set LA +> LA - 1, and move to step 2.

2.2.3.3 If Xp = 1 and L, = R, set Tg + Tg - £, and move to step o

2,2.2a). S

>

2.2.3.4 If Xy = 1 and LA # R, set Tg + '1‘g +1, set T+ T+ 1, and,

2,2.3.4.1 1f Xy

2,2.3.4.2 If Xy

¢, move to step 2.2.3.

0 or Xy = 1, set Tg + Tg - £, set

LA = 1, and move to step 2.
In figures 1 and 2 we present the flow chart of the algorithm. We observe that

the storage requirements are reasonable, and that only seven parameters are maintained

and updated. Among them, the parameters R and L; are integers, and as we will discuss

\
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in the next section, they correspond to numbers of slots.

4. Qualitative Propertiecs

In the description of the algorithm, class 1 reflects the operations of packets
in classes A and B, while class 2 reflects the operations of packets that are placed
in class C. The algorithm basically selects arrival intervals for transmission. Let
us call examined, arrival intervals that have been resolved by the algorithm. The

parameters used by the algorithm are then interpreted as follows:

R: An upper bound to the number of consecutive empty slots allowed, during
the resolution of some initial collision, where R>l. By déesign, no more
than R such slots are allowed. Thus, when packets observe R+l consecutive
empty slots, they know. that there is no collision resolution in process
(step 1.3.4). i

T: The time elapsed from the arrival instant of the packet, to the current
time,

L,: The number of slots containing packets from class A, from the arrival
instant of the packet to the current time. If the slot within which the
packet arrived is a slot as above, then it is included in the number LA'

T : The time elapsed from the arrival instant of the packet to the current
8 time, minus the examined interval after th~ above arrival instant.

L: The total length of the arrival interval that is transmitted in the
current slot.

A: An initial arrival interval, that represents a design parameter.
¢ The time length between the arrival instant of the packet and the ending
point of the most recent arrival interval currently chosen for trans-

mission (Figure 3). All the packets in the arrival interval that
corresponds to the length Tl belong to class C.

From the operation of the algorithm we conclude that if Xp = 1 and Xpp ™ 0or
1, then either an existing collision is resolved at T + 1, or no such collision is
in process. Also, if a packet arrives within the tine interval [T-1,T), and Xp1 ™ 0
or 1, then the packet moves to class A. If, instead, Xp_1 ™ C then the packet moves
to class B. The throughput of the algorithm can be as close to 0.487 as desired, if
the design parameter R increases. As R increases, and for low Poisson rates, the

expected per packet delay induced by the algorithm increases as well. Thus, the
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selection of the R value is bagsed on the desired tradeoff between throughput and

expected delay. In the presence of feedback errors, as in [3] and [4], the through-

put of the algorithm deteriorates gracefully, and no deadlocks occur (in contrast

to the algorithm in [1]). That should be clear from the operational characteristics
of the algorithm. We point out that the events represented by steps 2.2.3.2.3,
2.2.3.3, and 2.2.3.4.2 for X, = 0, in the description of the algorithm, can only
occur in the presence of feedback errors. Also, for R = 1, binary (collision versus

noncollision) feedback suffices, with minor modifications in the algorithmic rules.

5. System Stability

Let us now consider the evolution of the algorithm, as seen by an outside
obgserver. Let T measure time in slot units, and let the algorithmic operation start
at T=0. At T =R + 1 there will then be, R slots containing packets from class A,
and one slot containing packets from class C. Let us define the variables, T n’ d "

Ln(A), and L, as follows:

T =R+1
o

Ty ¢ The first time after T,,_;, such that there are no slots containing
;n>1  packets from class B. .

Dn : The total length of arrival intervals containing packets from class
;n>0 C, at time Tn; where do =],
Lnp(A) : The number of slots containing packets from class A, at time Tn.
;n>0

The triple, (D L Ln(A), In)’ describes the state of the system at time T, as
induced by the operation of the algorithm. The sequence, {S } = {(D , L A, In)}’
is a Markov chain. That is, given sn, the statistics of the states Sn K s k>1
are fully determined, and they are independent of the st.tes sn-k; k > 1. The above

is easily concluded from the operation of the algorithm, which also gives:

1<L (A <R+1;¥n>0 (1)
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8
d 20;¥n2>0 (2)
Moe
Dn-k-Az:—i-;k,nen,li-OOrl,M<°° (3) :
2 :
i=0 3
. ‘::—?.?;1
3+ where N denotes the set of natural numbers. 3

From expressions (2) and (3), we conclude that the values of Dn are denumerable.

In combination with expression (1), we then conclude that the state space of the

Markov chain,. {Sn}, is denumerable. It can be easily seen that the state, :”
Sp = (1, R, 0), 18 accessible by any state in {Sn}; thus, the state space of the L’::E‘:‘
Markov chain, {Sn}, has at most one minimal closed subset. Let us denote by 0, the ?i:
set of state values, (d, £(A), I), that are accessible from the state, So = (1, R, 0). :

That is, given (d, £(A), I) in D, there exists some n, such that,

Pr{s_ = (d, £(A), 1)|s0 = (1, R, 0} >0

The Markov chain, {Sn}, is then irreducible on 0. As it can be easily shown, {Sn}
is also aperiodic on 0. lLet us now define a set, {Hn}, of random variables, such

that,

H =T, -T (4)

Given n, given a state value, (dh’ l.n(A) s I n) » such that, dn > A, an arrival interval

of length A is then chosen by the algorithm for transmission. The statistics of the
random variable Bn in (4) are then similar to the statistics of the number of slots

needed, for the resolution of an arrival interval of length A by the algorithm in

{1}. 1In appendix B, it is shown that the following holds.

.
R A A

"5

E(H |[d >0} =E{H |[d = A} <o ; ¥A<® (5) o
n n— n n

]
4
N

Given n, let now the state value, (dn’ 4 n(A), I n)’ be such that, dn < A. Then,
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parameter £, equal to A. In appendix A, we show that the following relatioship
holds, however.
E{H |d <A} < E{H |d =A} (6)

Considering Markov chains with stationary transition probabilities, we
aow express two helpfil theorems and a corollary. The proofs of the theorems are
included in appendix A. The corollary is a generalization of theorem 9.1a in [8],
while theorem 2 is a consequence of theorem 9.1lb in the same reference.

Theorem 1

Let {Fn} be a Markov chain with denumerable state space F. Let g be a nonne-
gati. e gcalar real functional defimed on F, such that, g(s)<»; ¥ scF. Let there exist
constant; €>0 and 0<M<, and a set ACF, A¥F, such thaf,

1) 0 < sup [E{S(FI)IFO'B} - gi{s)]l =M
8EA

11) B{g(F))|F =s} - g(s) < € ; ¥ scA®

Then, )

Lim 'Pr{F eA|F =t} > =— ; ¥ teF
o n 0 Mi€

From theorem 1, we cau directly express the following corollary.

Corollary 1
Let {Fn} be an irreducible Markov chain with denumerable space F. let g be

a functional as in theorem 1, and let conditions i) and 1i) in the latter theorem
be satisfied. Let in addition the set A in theorem 1 be such that, if {Fn} is
nunpogitive reccurent, then,
e €
1) ﬁi’: Pr{Fn € AIFO i} < =45 $ for some 1 in F.

s where £, and M are as in theorenm 1.

Then, the chain {Fn} is positive recurreut .
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e
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Theorem 2
Let {Fn} be an irreducible Markov chain with denumerable state space F. Let g
be a nonnegative scalar real functional defined on F, such that, g(s) <» ; ¥s8 € F.

Let there exist B > 0, and a set AcF:A¢F, such that:

1)  E{g(F)|Fy=s} - g(s) 20 ;3 ¥s¢ A®

11)  E{|g(F))-g(F) ||Fms} <B ; ¥s € F

ii1) g(s) > sup g(t) ; ¥s ¢ AS
teA

Then, the chain {Fn} is nonpositive recurrent.

Let us now consider the Markov ehain {Sn? induced by the algorithm, and let us

consider the following functional,

g((d, LAY, 1) & a4+ £(A) Q)

Let us define, 8, = (dn’ Ln(A), In) and An = min(dn, A). An arrival interval

of length An is then chosen by the algorithm for transmission, at time Tn' At time

Tn+1’ the algorithm examires a subset, Gn of An for transmission, and at the same

n
Pkt

o oa

b

time the remaining packets, and those that arrived in the interval [Tn, Tn+1) are ;jﬁg
R

either in calss C or in class A. Therefore, denoting by hn the value of the ;§”2
g

variable Hn in (4), and considering (7), we have,

gl ) = gs ) - 6 +h (8)

Let us define the following set of states:

A={sec?D:s=(d, £(A), I) : d < A} (9)

We can then express the following lemma, whose proof if in appendix B.




Lemma 1
There exist constants, € > 0, 0 < M < =, guch that condition i) in corellary 1

is satisfied, for A as in (9), and for Fn ; n > 0 substituted by Sn s n> 0,

Using the quantitites, An and Hn’ defined earlier, using the functional g(-)
in (7) and the expression in (8), using the set A in (9) and the result in lemma 1,
using theorems 1 and 2, we can now express the main theorem of this section, whose

proof is in appendix B.

Theorem 3

The Markov chain {Sn} is positive recurrent, if and only if:

E{8,8, = (4, £(A), D} > E{Hy[S, = (4, £(A), 1}

The inequality in theorem 3 provides the necessary and sufficient condition for
the stability of the Markov chain {Sn}‘ We will now show that the satisfaction of
this inequality also guarantees the existence of a steady-state distribution, for
the per packet delay. Let Wh be the random variable that denotes the delay of the
nth successfully transmitted packet. We can then express the following theorem, whose

proof is in appendix B.

Theorem &
1£, E{§ |5, = (4, L), D} > E{Hy|S, = (8, L(A), D)}
Then, there exists some proper random variable, w; (that is Pr{wgsy}nl), such

that,

PriW_<bls, =t} + Pr{wS<b} ;¥beR ¥te?
n-— 0 <o 0-

Due to theorems 3 and 4, we conclude that the inequality in theorem 3 basically

expresses the condition for stability of the LSTFA; it thus provides the algorithmic

--' -.’
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throughput, for every given system parameter value, R. Given the system parameters,

A and R, the throughput, A*¥(A, R), of the LSTFA is the maximum Poisson intensity of

i S X
FéX Sl O

2
RY A

T R
i e
rr

the input traffic, that maincoins the condition for positive recurrence in theorem

A
’

(PR Y,

Pl
3. Given the system parameter R, the throughput, l*(R), of the LSTFA is then defined §E§§
as follows. £ 3
[
Er

A*(R) = sxp A*@a, R) = A*(A%, R) (10)

For various R choices, we computed the throughput, l*(R), in (10), using the
recursions in appendix B, in conjuction wifh tight lower and upper bounds on the
quantitites. in  theorem 3. ... In table 1, we list the values A*(R) = A¥(a*, r)
and A*, for various R choices. The throughput, A*(R), approaches the value 0.48711
in [1], as R increases. We point out that for R = 1, the algorithm can be modified
to operate with binary (collision versus noncollision) feedback, maintaining the
throughput 0.4493, versus the throughput 0.429 in Capetanakis' algorithm, and the
throughput 0.42 in [4].

6. Conclusions
In this paper, we presented a synchronous limited sensing random access

algorithm, for the Poisson user model, and for ternary feedback. The operational

characteristics 'of the algorithm are controlled by a system parameter, R, that takes

positive integer values. The throughput of the algorithm approaches the value 0.48711,

as the value of the parameter R increases. As the latter value increases, however,
the expected per packet delay at relatively low Poisson intensities, and the sen-
sitivity to feedback errors increase as well. This property should be qualitatively
clear, from the description of the algorithm. The choice of the system parameter, R,

is thus based on a tradeoff, between throughput and expected delays at low Poisson

rates as well as error sensitivity. For relatively small values of R, the algorithmic
throughput is close to the limit 0.487, while the delays at low Poisson intensities e

},'- are simultaneously acceptable, and while at the same time the algorithmic throughput

B

e e m e e iy e e s
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deteriorates gracefully in the presence of feedback errors (in contrast to the

algorithm in [1], that then reaches deadlocks). For R = 1, the algorithm basically

iXals

operates with binary (collision versus noncollision) feedback.

*s
£

B adin

We studied the stability properties of the algorithm analytically. We used
simulations, however, to initially derive quantitative results on the induced delays,
and on the behavior of the algorithm in the presence of feedback errors. In this
paper, we do not include the latter results, for two reasons: First, because the
delays, as functions of the system parameter R, behave as explained in the above
paragraph, and because the response to feedback errors is qualitatively as that of
the algorithm in [4]. Second, because we prefer analytical methods, and we are
presently in the process of developing the appropriate analytical tools, for

studying the delay characteristics of the algorithm,
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Figure 2
ACTIONS OF A PACKET WHILE IN CLASS 2
* The numbers with asterisks correspond
to the steps {n the description of the
N algorithm.
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Appendix A

EATOD

Y

Proof of expression (6)

Let dn = d < A. Let us then assume that there are q packets contained in d,
and there are m packets contained in A-d, where m > 0 and q > 0. Let us assume that

the whole interval A is chosen for transmission, and let us then denote by L(d, m,q)

the number of slots needed to resolve the initial collision. From the operation of
the algorithm, we then conclude,
L(d,m,q) 2 L(d,0,q), a.e.

We note that L(d,0,q) is identical to the number of slots needed to resolve:a

collision, when dn = d and there are q packets.contained in d; thus,

' E{L(d,0,q)} = E{H_|d = d, q .packets in d} ; d <A (A.1)
:%ﬁ
* Also,
E{Hnldn = A} = E E{Hnldn = A, k packets in A} Pr{k packets in A} ;:-‘%*\
k=0 B
r

o0 k ¢

= E Z E{Hnldn = A, k packets in A, q packets in d}.
k=0 q=0

. Pr{q packets in d]k packets in A, dri = A},

. Pr{k packets in A}

o0 k
= Z Z E{L(d,k~q,q) }Pr{q packets in d|k packets in A, d =4}
k=0 q=0
. Pr{k packets in A}
® o
= Z Z £{L(d,k-q,q)}Pr{q packets in d|k packets in A}.
q=0 k=q

[l
13

. Pr{k packets in A} >

Taitl

.
-

I by lh

- - " - )
e e e A e A T P e e T e S T



-~ - g v e e mmi wr s ey ~ o - 2 Bl B Dy, Tt v A4 W ey T TR G I W L WL WIS w T T g T g Ty T T T TV AN N T T TR A ¥ i T Wy SN
E“‘* "';?:‘-&‘ ~Y~%.ﬁ.‘.x‘..§f:.{-‘:;ﬁ3.'?f.\}f.‘ .-ﬁzgn{'muh‘.ﬁu-ﬂb‘..h‘.‘.&!ﬁ-::‘-::zl:.-:.uﬁnﬁ.".xdl\.f-.i-.:.mﬁu.ﬁ.~.:.‘.I:.. :.,‘-a.?-,...\“.k‘._.#'). LIS TR STVATT TR AW Vel e *<
N Dalld AL :

»
PR

'-:-';~ N
*

Y. N
-‘-
>
®
o

Ul

T
SN
P34
’

2

o -] 00

3

’:g > E E{L(q,0,q)} E Pr{q packets in d|k packets in A}Pr{k packets in A} =
qso k-q
(]

(due to A.l) = Z E{Hnldn-d, q packets in d} . Pr{q packets in d} =

q=0

- E{Hnldn = d < A}

Proof of Theorem 1

Let us define,

n
Py, = Pr{F_= s|F, = t} (A.2)

s
in

From conditions i) and 1i) in the theorem, we easily find by inductionm,
0<Eg(F)|Fy=s} <g(s) +nMiB (s) <o; ¥m<o; ¥scF (A.3)

Let us define,

0,(s) & Ela(r,,) - 8(F)[F_= s} (A.4)

..
et it Sttty
NN T

We will prove that,

.._-{_

o Tin 2; 0(s) P >0;%wtefF (A.5)
O n ts —

~ seF

11 O

Let us temporarily assume that (A.5) is false. Then, there exist some state

teF, ad > 0, and some NG < o, guch that,

n
D 0(s) By <-8;¥n>N, (A.6)
seF

Expression (A.6) implies that,

E{g(F ,,) [Fy = t} < E{g(F ) |F, =t} -8 ; ¥ n > Ng
and thus,

+ % . e G e Lt
ORI I AL LS A
e s At At et et et At i tat e a2
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&

A.3

E{g(FNG_’_k)IFO -t} < E{g(N6)|F0 =t} -k§;¥k>1 (A.7)

But due to (A.3) we have, E{g(NG)IFo = t} <= ; thus, (A.7) gives, [
& E{g(l“N‘s +k) IFO = t} = - o, which contradicts the left part of (A.3). Thus,
expression (A.5) holds. Using (A.5) and the conditions in the- theorem, we can now

write,

i -Zen(s) P:e = E Gn(s) P:s + Z en(S) P:s <

- 8eF scAC seA

c
<-ePr{F e A|F, =t} + MPr{F ¢ AlF, = t} ~

&+ (1) Pr{F € A|F, = t} + S

S

+0 < T Z:G(S)Pn < -¢+ (et Zim Pr{F_c A|F, = t} Y
- n ts b n 0 N
n*e b ead Al

seF “213;

+ 0 < o= <-Zim Pr{F_ € A|F, = t} %
M€ oo n 0 g

Proof of Theorem 2

We will prove the theorem in a number of steps. We first state and prove

theoxrem A below.

Theorem A

Let {Fn} be an irreducible and positive recurrent Markov chain, with stationary

transition probabilities, {ﬂs}, and with denumerable state space F. Let g be a 3

positive scalar real functional defined on F, such that, g(s) <» ; ¥ ge F. If

there exists, 0 < B < @ , guch that:

H
I- .
&
S
¥
A' \
)
A

s .
~: E{|g(F)) - 8“’0?"1’0 ~sl<B; ¥seF (4.8)
Then,
"‘.a‘ - = =
3 2 Ele(f)) - g(F)|Fy = s} m_= 0 (A.9)
- SGF
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Proof

Let there exist some state t in F, such that, Pr{So = t} = 1, and let us define,

0 (s) = E{g(F g(Fn)an = g} (A.10)

Let T, ; £ > 1 be the time of the £th visit to state t. Then, since {F } is

positive recurrent, we have,

E{'I‘l} <o (A.11)
and due to (A.8),
lo ()| <B s ¥seF (A.12)
Thus,
' Z 0,(F.) I <BE{T,} < (A.13)
. eI
From (A.13), and from theorems 2 and 4 in [9], we conclude, ?%g
W
B:T:‘,g.
T -1
E o_(F)
=Y 9(s) 7 (A.14)
0 8
E{Tl} seF
Let us define,
2 (E{g(F ) |E 1} - 8(F)] s k21 (A.15)
a=l
z =D, O(F);k2>1 (A.16)
n=0

Then,

. Zk = g(Fk) - g(t) + Yk (A.17)
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But, as in the pxoof£ of theorem 1, we have, E{lg(Fn)I Fo =t} <o; ¥n, and
E{g(Fn) an-l’ Fn_z,...,Fo} x E{g(Fn) an—l}’ due to the Markovian assumption. Thus,
the process {Yk} in (A.15) i{s amartingale with respect to the Markov chain {Fn}

(po 240’ ex. b’ in [10])0 Alaoi

| Yo - Ykl ) lhE{g( R IR -8R )| =

= |Ele( ) -e®)IF} - [g(F ) - e(Flil <

<B+ |gC Fk-l-].) - g(Fk)|
E{lqu - Yk| Bes ey oo Fgt <B4 E{|g(F ;) - 8(F)] FyseeesFol =
- 8+ B g, - g(rk>|'{1vk} <28;%k>1 (A.18)

Now, T, is a Markoy tine with respect to {Fn}. Thus, in conjuction with (A.1l)

and (A.18), we conclude ( corol. 3.1, p. 260 in [10]),
E{YTI} = F.{Yl) - E’E{g(rl)lFo}- E{g(Fl)}} =0
And,
E{le} = E[g(FTl) ~g(t) +Y1;} = g(t) - g(t) +E {YTl} = 0

(A.19)

From (A.14) and (A.19), ve ¢mzclude, Z (90(3)'"s = (0, that proves the theorem.
scF

We now prove the fol lowfng lemma.

Lemma A

Let {Fn} be an irredwuc¢ible Markov chain, with denumerable state space F. Let
g be a nonnegative scalar wxeal functional defined on F. Let there exist some

0 < B <», and an element T in F; T#F, such that,

g 4 ~d4 ‘a " _w= #F T Ny y f o R L 44rr4 = Cher 2 B "C il "L AR b T S e ey
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A.6

a) E{g(F)|¥s=s} -8(s) 20; ¥scF:sfr

b) E{|s(F)-g(Fy)| Fpsb < B; ¥scF

c) g(8) >g(t) ;) ¥seF ikt

Then, the chain-{?ﬁ}-is nonpositive recurrent.

Proof

Let us agsume that {Fh} is positive recurrent. Due to theorem A, in conjuction

with property b), we then conclude,

i Y E{g(£))-g(Fy) [Fyms} 7 = 0 (A.20)
seF

;s where, {wa}; T, >0, ¥ scF, are the stationary probabilities of {Fn}.

But,

Y Elg(F))-g(Fy) |[Fome} 7, = 7 E{g(F))-g() |Fg=t} +
3 seF
1 + Z E{g(Fl)-g(Fo) lro-s} (A.21)
seF
5 84T
; And, for {p, } : m_ = :E: Ppg Tps
LeF
E{g(F))~g(1) [Fg=1} = 3" [e(&)-g(D)]P,, (A.22)
LeF
Lt
A Since the chain {F } is irreducible, there exists some L:leF, {ftT, such that,
s
:g sz > 0. Due to that, in conjuction with condition ¢), we obtain,
E{g(Fl)-g(T)IFO-k} > 0, where m_ > 0 (A.23)

R

Due to condition a), we have,
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A.7
Y Ela(r) -a(r) g =s} 7, 20 (A.26)
scF
S¥T

From (A.21), (A.23), and (A.24), we conclude,

> Elg,) -8 ) |p =8} 7w, >0 (A.25)
seF

(A.25) contradicts (A.20); thus, the chain {Pn} is nonpositive recurrent.

Let us now refer to the statements in theorem 2. Since the Markov chain {Fn}
is irreducible, there exists some state T in the set A, and some state 1:1 in the

set Ac, such that,

‘ Pﬂ.l >0 (A.26)

Let {Ft'l} be some Markov chain with state space, F' = AS U T, and with transi-

tion probabilities, {P' s}’ given as follows:

Pts s 8 € AS ,
' = . ° B
Ple (A.27) B s
2 P,.s=T e
tt 3 BT
feh

; where {Pt s} denote the transition probabilities of the chain {Fn}'

T
Lo

Let us now define,

De Bt

ar

A
=min{n > 1 : F =g|F wt}

PR Y SR
4] s

s -

. A e

= + F Fom R T

Py = min{n 21 : EA[F =t} (A.28) g

p) 8 min{n > 1 : F'=g|F =t} {:;-'.:,E

ts - n o 3.'.2*.3&

.‘\:;‘-

iy

Clearly p'rA < pﬂ , a.e. Also, .::_::'.{;
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Rk il 1o TR K ALY
Eh

i

''= - ' = \ ,.
Pr{pt’t 1} Per Z Pet S
' Lea (A.29) F
oy ' = ' - .

; Pr{ptT-n} Zc P, Pripl =n-1} 5 n > 2
s€EA

;\

.
e
‘a
L)
o
.

But the recursions in (A.29) are also satisfied by the probabilities Pn{ptAfn}; n>l.

Thus, p%T‘g pTT stochastically, and to prove theorem 2, it suffices to show that,

E{p.}r} = ® (A.30)

Indeed, if (A.30) is true, then also E{prr} = o ;:and {F;} is then nonpositive

recurrent. Let us now define the following functional, g', on F':

g(s) ; 8¢ AS

g'(s) = (A.31)
sup g(t) s s= <
teA

o

We will prove that the functional in (A.31) satisfies the following properties.

L wd Mt pa g
AP e S
LY

X 2ot o

'.l
A RARY
AU

d) E{g'(F}) |¥'=s} - g'(s) 20 ; ¥ s € A°

:"z
’s

PNy
4N
* »
'y
L. l‘.

e) E{|g'(F))-g'(F))||F=s} < B; ¥ s ¢ F

£) g'(s) > g'(7) ; ¥s¢e AS

Property £) evolves from condition iii) in the theorem. Property d) holds,

because due to condition i) in the theorem, we have,

¥ s e A% E{g"(F)|Flus} - g'(s) = D, g'(D) B, +g'(T) Bl - g'(s) = X

Lea® R

= 2 8@y, +{ow gD} By - 8() 2 D 8D By - 8(e) =
bed pea LeF

LeA®

-
. [
[ SN P, )

= E{g(F,) |F _=s} - g(s) 2 0

b i A

To prove property e), let us first consider the following derivations:
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FRILE M e N

For s € A% E{|g"(F})~g'(F )|

F:)"S} - Eclgv(z)_gv(s) |p;£+|g'(1:)..g'(8) IP;T =
LeA

=3 lat-se)p, + ls'(M-ae) | Y 2, <

Lea® LeA

<Y le@-ga)|p_p = EL|g(F))-g(F_}|F =s} < B ; since

g(s) > g'(t) >g(t) >0; ¥teA, ¥sc A, and thus, ’f‘
B

18'(t)-g(s) ]| < |g(®)-g(s)| ;s ¥ L € A, ¥ s € AS, (A.32)

Also,
E{|g' (F})-g" (F) | [Fl=t} = D  |s(®)-g" (D] P, < 2. le®-g(n) [P <
Lea®

LeA®

< 20 18080 Pyy= E]a(F) () |
LeF

Fo- T} < B (A.33)

Expressions (A.32) and (A.33) prove condition e). For the Markov chain {Fa},

the state T {s accessible by any statz in ASCF'. Let C denote the set of all

states in F' that are accessible by the state T, where C <F'. Then C is an essential
clasg; that is all states in C communicate. The set C is thus closed. Let us now
denote by {F;} » the restriction of the Markov chain. {Ft'l} on C. Then, properties

d), e), and f) hold trivially for {Fg}, where T#C due to (A.26). 3ince the chain

{Fg} is irreducible, it is also nonpositive recurrent, by lemma A. Thus, (A.30)

holds, and the proof of theorem 2 is now complete.
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Appendix B

Proof of Lemma 1

Let us define the following set,

B={se?D: s=(d,£(A), I) : d integer, 0 < d < R+l} (B.1)

Then,

Pris ,, € B|s =1} =Z Pr{3_ ., € B|S =s} Pr{s =s|S =i}
seD

> E Pr{s ., € B|s =s} Pr{s =s|s =i} (8.2)
s€A

Ye now observe that if s = (d, £(A), 1), d < A, and there are no packets in A,

then Sn+ € B. Thus,

A H
AR B~ H

"y oW
LN

1
pr(s_,, € B|S =(d, £(A), ), d < A} >

> Pr{0 packets in d|s =(d, £(A), 1), d < A} =

= e >e (B.é)
From (B.2) and (B.3) we conclude,

-AA =AA
Pris_,, €B [ =1} > ™" 3 Pr{s =s|S =1} = & Pr{s eA|s =1} (8.4)
sEA

But the set B is finite; thus, if {Sn} is nonpositive-recurrent, then,

Pris_,, € 3|s°=1}w-;°o ; ¥ie? (B.5)

From (B.4) and (B.5) we then conclude that if {Sn} is nonpositive recurrent, then,

Pr{s_,, c AjS =i} + 0 ; ¥ 1€ D (B.6)
n+l 0 oo
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B.2

The proof of the lemma is now complete.

Proof of Theorem 3

Considering expressions (8), (5), and (6), we obtain,

E{|g(s,)-g(s) |

s s} = E{I-Go, + u°]|so-s} <

< E{|s ]

s =s} + E{|H_| 'so-s} <

2y
s

AR
A a
=

SA+EH|d =A}2M<o;¥s5eD (8.7) A

s since 0 < 6°_<_A » 8.8,

Due to (B.7), we easily conclude,
E{s(Sl)ISO-s} -g(8) <M< ; ¥ge?D (B.8)

Part 1: Let us now assume that the following inequality holds,

E{Gol So'(A',z(A) 91)} > 'E{Holso'(Aaz(A) ’I)} (B.9) *,::‘:’\3
o
Then, due to (8), and for A as in (9), we have, \‘.

E{g(Sl)lSo-'s} - 8(s) = - E{§_|s_=(8,L(4), D)} +

+E{H |5 =(A,LA),D} & ~c <05 ¥se (B.10)

But thé conditions (B.8) and (B.10) are as those in theorem 1. Then, in conjuc-
tion with lemma 1 and corollary 1 we condluce that if (B.9) holds, then the Markov

chain {S_} is positive recurrent.

Part 2: Let us now assume that the following inequality holds,

E{GOISO'(A&(A) 1)} < E{H_|S_=(A,£(A),D)} (B.11)

Congider the set,
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B.3

BC = {seD: g(s) > A+R+l} (B.12)
Then, we necessarily have, s=(d,£(A),I); d>A ;¥ seBc,and due to (8),

E{g(s,)) |sy=s} - 8(s) = -E{5|S =(A,£(A),D)} +

E{H,|5,=(8,2(4),1)} > 0 ; ¥ scB® (B.13)
Also,
g(t) < A+R+l 5 ¥ teB + sup g(t) < g(s) ; ¥ geB® (B.14)
teB

Conditions (B.7), (B.13), and (B.14) are as the conditions in theorem 2, with
set A in the latter theorem being substituted by the set B, where B® 15 as in (8.12).
Thus, if (B.1l1l) is satisfied, then the Markov chain {Sn} is nonpositive reccurent.
Parts 1 and 2 above complete the proof of theorem.3.

Proof of Theorem 4

If the condition in the theorem holds, and due to theorem 3, the Markov chain
{Sn} is positive reccurent. Let us now define,
A
so- (0, R¥l, 1) = t,

A A
¢0. 0, pn-min{k : s¢n"'k =t } . ¢ ¢ uR (B.15)

A A
Tn T¢n 'y Tl,n = 'l'n - (R+1)

The instants, {Tn}, are thus such that, there are no slots containing packets
from classes B and C, there are R+l slots containing packets from class A, and the
last slot just before each of those instants contains a single successfully transmit-
ted packet. The interval, [Tl,n ,Tn), contains all the R+l slots, which at time Tn
contain packets from class A. Since the Markov chain, {Sn}, is positive reccurent,

the random variables, {pn}, are i.i.d., with finite expected value. Let us define,
p,~1
4 - -
On—rn+1 T, 12:3 H¢n+i Tl,n-i-l Tl,n (B.16)

swhere Hn is given by expression (4).

Then, the random variables, {On}, are i.1.d., and,

)\. ﬂ." ST -:_'.‘ Ayt

by
LA AL " " o P S A

ed

et o

i

PARALT
Iodt
(2% Y

[4 y orn's B i 1 LH
EF PR l;'-;“" ~ 3

4 AR

LL Lagin ! - !E‘_

RGN

o o

v

o
LAX KR
vy g T

A

i

7

I S

A
AP

L A

PR

&
I

ST T
j5
03

LY
e

e
-"

o

AL
i
“"".l‘
- L P

(AT K AL
oSl

e
8 O
3 ARA
2




LR A A IR P LA TR
R}

fy - . + R
L2 (8 AN SFLANELAN T, B Ot S I, J6 L S L et

A ek o &

CI N

o L ta

£

Fed ~ T ¥
oW a3 i

o 2
.

B4
po-l po-l
gm-w=§tm%¢wm-wd1%wo
Po~L Po-1
+og§ui-§)si_gpoa-»ogeogpoz\ +
+ 0 2 E{9,} < A E{p,} (B.17)

Let us now denote by Mn’ the number of packets that arrive in [Tl,n+1’ Tl’n).

Then, the random variables, {Mh}, are i1.i.d., and as in [12] it can be shown that,

E{Mo} = ) E{Oo} < ® (B.18)

Since all the M.n packets are transmitted in [Tl’n ’Tl,n+1)’ the process, {Wn},
is regenarative, with respect to {Mh}. Moreover, it is easily concluded that,
Pr{Mb-l} > 0; thus, the distribution of Mo is aperiodic. Taking into account expression
(5), we thus conclude that the assertion in theorem 4 holds- (see [13],th. 2). Also,
since {Sn} is positive reccurent, the variable, p = min {k: s¢n+k = tolsont},is a
proper random variable; thus, {Mn}, is then a delayed renewal process, and the theorem

also holds for So-tfto.

Recursions

Given A and R, let us define the sequences {L,} and {Q,}, and the quantities
k

p?. as follows,

L, 4 E{HOIDO-A, k packets in A}
A
Q =
pI; é(:)z-k (8.19)

; where H, and D0 are respectively defined by (4) and (3), and where 60 is

'E{GOIDO-A, k packets in A} §

as in (8).

From the operation of the algorithm, we then easily derive the following recursive

expressions.
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L,=L, =1

(=]
=

P e f'- 23 ,n

(B.20)

a7

]

1“:.. "
oo

25 153

L, ) 3 w.p.(p 0<L<R-1

wse
Y
Ty
.
g

Lwa¥

——
fa)
:
RS

L, = L+, 3 wep. (p 0<L<R1,k>1i>2

o
B =
-e
Sy
x P

0
Vi
X’

4R, 5 Wep. (po)R

L 2 (B.21)
A Z R R e W.Do (pl;) pl{ » 0< L <R-1

L0
w
!
[
we

L
- -l L
Q, AZZj-l-Z'ale w.p.(p:) pli‘,o_<_£5R-1,k_>_132

we
N
[
[
we
e
o "v .
Uit
A
'l'lﬂ
FX)

>
%S
Ly Ry
el TSNS
W IEI AL

. A Zj + Z-RQk 3 WePo (pl;)R

Defining 2 x, = 0; 1f n < k, and respectively from (B.20), and (B.21), we

conclude,

k\R kLo kRok
1- (py) - [-pg) [1-(oQ) 1 S { Ty =
1 R k-1
. k7l k k, k, k k )
1+ [1-pg] [1~(p) 1 {pg + Py + Py Ly + 9, Pylyp s k>2
i=2

L = Ll =1 (3022)
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Note that for R = ®, the sequences, {Lk} and {Qk}, are exactly as in Gallager's

algorithm (1], [11].

If we put Q = AQ!, then we can easily see that Ql catisfies the following
k k k

recrugions:

- R -1 -R. k. R y
1- 2R 20281 112N 125} b -

k-1
-1
- (7 k, k ' .
[2p] [1-27 (p ) ] P, +p1+pl Qk_l-'-z piQi 3 k>2
=2 %
(B.24)
Q' =1, Q' =1
From (B.22), we can easily conclude by induction. that,
0L <3ki¥k>1,¥R>1, ReN' - (B.25)
Therefore,
-+
0 < E{Hy/D@A} = 3 L Pr(k packets in A) < 3A A+l < =;¥Q < A <=, ¥ ReN'  (B.26)
' k=0 v

This proves the inequality in (5).

Formula (B.25) permits us to develop tight lower and upper bounds on E{Bé/?U'A} as

follows: From (B.22) we can directly compute a finite number, M, of terms of L

k.
Then, by using (B.25) we have,
M k M k
) A (ML) i -8 ()
HyM) = 30 1, 70 S0 < Elig/pg=d} < Y 1, e AR+
k=0 k=0
+3M-3Zk'MMk=n(AA) (8.27)
e k! u *

k=0

Similarly, since 0 < Ql'c < 1, we have,
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Sp(M) =M Y Qe —-l<xn{6/n-A}<

k=0
)k S ok
<M Eqk MO 1 -3 MM L o) (B.28)
k=0
AE{G /Dy =A}
Now, the condition, E{Go/DofA} > E{HO/DO-A}, is equivalent to, f(M) = AT—;75—;KT— > A
and therefore, the throughput of the algorithm is
)\ (R) = sup f(A ) , where A1 = A
A >0
But
§,(4)) 6,4y §,(4)) 6,(4,)
21 1 2717 * 1
< £(A)) S == + sup < A7(R) < sup (B.29)
BG) =" HL(A 8,50 @) 4,50 HL(Al)

Based on (B.29), we give in table 1, the values of A*(R), A; = A*A%(R), A*, for

different Rs. In the computation we took M = 25. The values of l*(R) in the table are

correct, up to the digit referred to in this table.
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